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New general dependences for the coagulation parameter ~ and the collisional splitting 
of a drop are obtained which take into account particles of similar dimensions. A numerical 
study of one-dimensional polydisperse flow in Laval nozzles is conducted. It is shown that 
the new dependence for ~ allows one to determine flow parameters more accurately. 

An investigation of polydisperse two-phase flows has been considered in a number of 
studies (see [I]). Mathematical models have recently been obtained which take into account 
coagulation and lag of the particles upon collision, the polydisperse composition of the sec- 
ondary particle fragments, etc. Additional experimental information on the transfer of mass 
and momentum during interactions of the drops is needed to make practical use of these 
models�9 The following equation was obtained in [2]: 

�9 ~ = i -- 0.247 Re~4S~Lp~~176 ( 1 ) 

for the ranges 35 < Reji < 385; 5 < Lpi < 600; 2 < Aji < 12. Here, Reji = [uj -- uil6jp/q 
is the Reynolds number, LPi = 6iop/q 2 is the Laplace number, Aji = 6i/6j(5 j < ~i); 6, u are 
the diameter and velocity of the particles, p, ~, o are the density, dynamlc viscosity, and 
the coefficient of liquid surface tension, ~ji is the average ratio of the change in mass 
of particle i over some time interval to the total mass of the particles which collides with 
it. 

Equation (I) is insufficient because it cannot be used for describing the interactions 
of particles with similar dimensions (Aji < 2). One should note that under real conditions 
particles with similar dimensions generally move with similar velocities, but in a series of 
cases the collision frequency (and, therefore, the contribution of these particles to the 
growth rate of large particles) can be significant. In correspondence with [I], the rate 
at which the dimension of particle i changes is equal to the following in the quasi-one-dimen- 
sional approximation 

dS~ ug~pgas ~ + - -  

dx 9 o ~ ~9 ( 2 )  
.pu ~6 T J=l 

where x i s  t he  l o n g i t u d i n a l  c o o r d i n a t e ,  M i s  t he  mass d i s c h a r g e  d e n s i t y ,  and E i s  the  p r e c i p i -  
t a t i o n  c o e f f i c i e n t ;  the  q u a n t i t i e s  w i t h  the  index  g p e r t a i n  to  t he  g a s ,  and the  f r a c t i o n s  a r e  
numbered in  o r d e r  of  i n c r e a s i n g  p a r t i c l e  d i m e n s i o n .  I t  i s  e v i d e n t  f rom (2) t h a t  f o r  a g i v e n  
t and an i n c r e a s e  in 6j t he  c o l l i s i o n a l  c r o s s  s e c t i o n  i n c r e a s e s .  In  a d d i t i o n ,  t he  r e l a t i v e  
c o n t r i b u t i o n  f rom the  d i f f e r e n t  te rms  in  the  r i g h t - h a n d  p a r t  of  (2) i s  p r o p o r t i o n a l  to  the  
c o n c e n t r a t i o n  of  f r a c t i o n s  f .  As was r e c e n t l y  e s t a b l i s h e d  in [1 ,  3 ] ,  i t  i s  s i g n i f i c a n t  t h a t  
in many c a s e s  p a r t i c l e s  f rom s e v e r a l  l a r g e  f r a c t i o n s  t a k e  on v e r y  s i m i l a r  d i m e n s i o n s  i n d e -  
penden t  of their initial sizes. 

The study in [4] presented experimental data on the transfer of mass during collisions 
of drops with similar dimensions (Aji = I, I ... 3). For small A~i, intense drop splitting 
is observed, where Eq (I) overstates the value �9 of tji" Processing of the experimental data 
in [2, 4] resulted in the following new general equation: 

(Dji = 0[893 - -  1.979Asi + 'l_.0i4A~, 
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Ai~ ~ (Re.u/383.6)~176176 (3) 

One should note that the applicability of Eq. (3) is limited by the condition Aji ~ I. 

It is also more important to study high velocity flow of polydisperse two-phase mixtures 
with greater accuracy (compared to [I, 2]) taking into account the transfer of mass during 
interactions of particles with similar dimensions. This problem will be considered in con- 
nection with quasi-one-dimensional flow in Laval nozzles. Calculations were made using the 
technique in [2]. It was assumed that the fragments are polydisperse and have initial veloci- 
ties corresponding to those in [I]. The parameters of dynamic and thermal interactions be- 
tween the gas and the particles were determined according to [I] taking into account an in- 
crease in the coefficient of aerodynamic resistance which deforms the drop. The splitting of 
large particles by aerodynamic forces is not considered in this study. Calculations were 
conducted in connection with the Laval nozzle [I] for a wide range of values for p, P0, r*, 
r~/r* (p is pressure, r is the cross-sectional radius of the nozzle, and the quantities with 
the indices 0, ,, and a are related to the initial, the minimum, and the final cross sections). 
Ten fractions of polydisperse condensation were considered; the average initial particle di- 
mension was 6~3 = I ... 3 pm. Every variant was calculated using Eqs. (3) and (I) (the solid 
and dashed curves in Figs. I-5). The base variant corresponded to r* = 0.03 m, P0 = 15 MPa, 
p = 7 [z = ~/(I + M) = 0.875], 6~3 = 1.6 Mm, ra/r* = 17, and the initial particle dimensions 
for the factions 6i0 (~m) were: 0.8, 1.2, 1.6, 1.8, 2.0, 2.4, 2.8, 3.2, 4.4, and 6.0. Some 
of the results for the base variant are shown in Figs. I and 2. 

Values of the coagulation and splitting parameters for intense particle interaction are 
shown in Fig. I (curves I-3 correspond to j = 6; 6; and 8, and i = 8; 10; 10, and the value 
of x is related to r*). As one would expect, almost all the dashed curves lie above the cor- 
responding solid curves. One should note that Fig. I gives values of Cji calculated from 
Eqs. (I) and (3) for different 6i, ~j, ui, uj, etc. (also see Fig. 2). This explains the 
intersection of curves I for x > 1.5. The maxima on curves 2 and 3 for x ~ 0 ... I arise be- 
cause the largest particles (i= 10) are deformed by aerodynamic forces, which leads to an 
increase in the force of interphase interaction and in the velocities of these particles 
such that luj -- ui[ and Reji decrease. 

A change in the particle dimensions of the fractions along the length of the flow is 
illustrated in Fig. 2 (curves I-3 correspond to ~i0 = 3.2; 4.4; 6.0 ~m, and curve 4 corre- 
sponds to the particle dimension 643). It is evident from this data that using Eq. (3), 
there is not rapid growth of the large particles. However, the selection of an equation for 

has practically no effect on the particle dimensions of the small and moderately sized 
fractions. The fraction composition of the condensation noticeable changes when using Eq. 
(3) over Eq. (I) (especially for supersonic particles): The concentrations of small frac- 
tions increase, and the concentrations of large fractions significantly decrease. In addi- 
tion, the difference between values for the average particle dimension corresponding to Eqs. 
(I) and (3) (curves 4) is greater than the difference between the particle diameters for in- 
dividual fractions. 
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TABLE 1 

Calculations using E~(8),.(4 ) 

Calculations using~qs. (t), (4) 

3 

4,3/2,5 

4,8/2,8 

7 

6,3/3,8 

7,0/4,2 

t O  

7,3/4,8 

8,t./5,3 

Calculations show that the dynamic lag of all condensation fractions decreases somewhat 
when using Eq. (3). This is related to a decrease in the dimension of large particles (see 
Fig. 2) and to the more pronounced effect of the discrete phase on the gas, which leads to a 
decrease in the longitudinal gradients of the gas parameters. 

The dependences of the average particle dimension for minimum I and final 2 cross sec- 
tions are shown in Fig. 3 along with loss in momentum caused by particle lag 3. For an in- 
crease in r*, with other conditions being the same, the duration of the particle's existence 
in the flow increases, which leads to an increase in 643. However, the loss of momentum de- 
creases, and the decrease in the rate of velocity increase for the gas becomes more important 
[I, 3]. One should note that using Eq. (3) for the supersonic part prolongs the growth of the 
particles, whereas Eq. (I) indicates a decrease in 643 (compare with Fig. 2). 

The dependences of 643 and ~ on the initial pressure are given in Fig. 4 (the labeling 
is the same as that used in Fig. 3). For an increase in P0 the volumetric particle concen- 
tration increases along with the collision frequency; therefore, the quantity 643 monotonely 
increases. Dependence ~(P0) is more complicated with one (the solid curve) or two (the 
dashed curve) extrema. This is due to three factors: I) the increase in the particle dimen- 
sion (for an increase in p0); 2) an increase in the force of aerodynamic resistance and the 
subsequent decrease in the dynamic lag; 3) the more significant effect of the particle on the 
gas, which leads to less dispersion of the gas. The second and third factors are related to 
the downward sloping parts of curves 3, and the first factor is related to the upward sloping 
parts. 

For increase in the total concentration of condensation the intensity of interaction be- 
tween the fractions increases, which leads to significant differences between the calculation 
results from Eqs. (I) and (3). Therefore, if for p = I the difference in the values for the 
loss of momentum is A~ ~ 0.5%, then for p = 5 ... 7 the difference is A~ % 3%. 

The calculations described above do not account for the effect of gas flow on the colli- 
sional splitting of particles. According to [I] this factor leads to a decrease in %ji (com- 
pared to the case where the particles interact in a gas medium at rest) by the quantity 

A~j{ = 0A8-We~67Re~i~Lp?'12A~ 2"27 (4 )  

(We i = Pgas6i(Ugas -- ui) Z/d is Weber's number). Values of the parameter Cj i for the base vari- 
ant are shown in Fig. 5 which were calculated with corrections (4) (with the same labeling 
as that used in Fig. I). The data show that the difference between values of the "collision 
efficiency" which corresponds to the use of either Eq. (I) or Eq. (3) is much less. Large 
sections of the dashed curves lie below the solid curves. In addition, the difference 
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between the integral flow parameters is less. As an example, some data for three calculation 
variants are given in Table I (the numerator shows percentage values of 5, %, and the de- 
nominator shows values of ~3 in ~m). 

Therefore, when accounting for the effect of gas flow, the decrease in momentum loss 
due to refinement of ~ji is about 10% of 5. 
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STUDY OF INERTIAL SETTLING OF POLYDISPERSED PARTICLES AT THE 

CRITICAL POINT OF A SPHERE 

Yu. M. Tsirkunov UDC 532.529:533.6.01~ 

The flow of an incompressible gas with particles past a body at high Reynolds numbers 
is studied in many works, for example, in [I-6], where in the calculation of the character- 
istics of inertial settling of an impurity the particles are assumed to be monodispersed. At 
the same time, in real gas suspensions the particle sizes are always different. Polydis- 
persity of particles even in the case when their interaction with one another is ignored, 
substantially complicates the picture of the motion of the impurity near the body. Particles 
of different sizes are deflected by the gas flow differently. As a result, the fractions are 
redistributed in space and the initial particle-size distribution function of the average 
density of the dispersed phase changes. In this case it is difficult to set up and solve the 
"kinetic" equation describing the evolution of the distribution function. In this paper we 
propose a method for calculating the flux density of settling polydispersed particles at the 
front critical point and the flux-density distribution function over the fractions. In so 
doing just as in [I-6], it is assumed that the particle concentration is small, and the effect 
of the particles on the gas flow and the interaction of particles with one another are ignored. 

In the case when the impurity concentration is negligibly small, the problem of the flow 
of a gas suspension past a body reduces, as is well known, to a sequence of two simpler prob- 
lems the construction of the flow field of the carrying medium near the body and the calcula- 
tion of the particle trajectories in this field. If the Reynolds number is large, then the 
viscosity of the gas in the problem of flow past the body is usually ignored. Estimates [I, 
3, 4] and a direct calculation [7] show, however, that there exists a quite wide range of 
parameters of the flow of the gas suspension where the viscous boundary layer on tbe surface 
of the body substantially affects the motion of the impurity and, therefore, in the general 
case it cannot be neglected in determining the characteristics of inertial settling of the 
particles. In this paper the flow field of the gas near the sphere is given just as in [7], 
based on a model which includes the external potential flow and the viscous boundary layer. 
It is shown in [8] that the use of such a model in the calculation of the flux density of the 
settling particles gives a quite high accuracy at the critical point, if Re ~ 105 . 

In the problem under study the dominant force exerted by the carrying gas on a dispersed 
particle is the aerodynamic drag force [7, 4, 7]. Stokes' law [I-4] or the "standard curve" 
[5-7], which is obtained for an unbounded uniform gas flow past a particle, is often used 
for the aerodynamic drag coefficient of the particle. At the same time, it is known [9] that 
when the particle motion in the viscous medium is slow, near a solid surface its aerodynamic 
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